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The fractal properties of the total potential eneiMjyas a function of tima are studied for a number of
systems, including realistic models of proteifpancreatic polypeptide, bovine pancreatic trypsine inhibitor,
and myoglobin. The fractal dimension o¥/(t), characterized by the exponept is almost independent of
temperature, and increases with time, more slowly the larger the protein. Perhaps the most striking observation
of this study is the apparent universality of the fractal dimension, which depends only weakly on the type of
molecular system. We explain this behavior by assuming that fractality is caused by a self-generated dynamical
noise, a consequence of intermode coupling due to anharmonicity. Global topological features of the potential
energy landscape are found to have little effect on the observed fractal beli81i063-651X99)11402-9

PACS numbd(s): 87.15-v, 36.20—r, 61.43.Hv

I. INTRODUCTION known about the generation of rough surfaces using fractal
algorithms and, conversely, on the analysis of rough surfaces
The energy landscape of proteins near the folding temin fractal terms[8,9]. In this sense the notion of the rough-
perature is often described as compléx2]. That is, the ness of the energy landscape of proteins naturally calls for a
landscape is expected to be rugged and composed of mafactal analysis, which caguantifythe degree of roughness.
minima and maxima, separated by barriers of varyingSecond, fractal dimensions often show up as “universal ex-
heights, the result of frustration due to conflicting interac-ponents,” and are related to the critical exponents of phase
tions between different segments of the protein. The complegansition theory[10]. Conversely, there is a certain univer-
nature of the underlying energy landscape has been demosality in protein dynamics, in the sense that most proteins
strated using ergodic measuf&$ and by exact enumeration exhibit a folding transition and multiexponential relaxation
of minima and transition states of a tetrapepfidle The goal  times. This suggests a common feature in their energy land-
of the present work is to investigate this energy landscapecapes. While the rapid transition to folded states in small
under a variety of conditions using tools from fractal analy-proteins is best rationalized by the existence of a dominant
sis. The trajectories needed for analysis were generated usimgtive basin of attraction or a folding funn@d,11], the re-
MOIL, a molecular dynamicgMD) program which allows |axation phenomenon might well be related to the roughness
realistic simulations of small proteins using semiempiricalof the energy landscape, and hence to its fractal dimension.
potentials[5]. Using MoIL, the total potential energy(t) A “universal” fractal dimension would be a strong charac-
was calculated as a function of time, for several proteins oferization of what it is that is common to different energy
choice[PPT (pancreatic polypeptideBPTI (bovine pancre- |andscapes. Third, establishing that the energy landscape of a
atic trypsine inhibitoy and myoglobir at constant tempera- protein is indeed fractal would allow one to relate the subject
ture. For comparison, we also simulated polyalanine an@f protein dynamics to a whole body of work on dynamics
NaCl. TheV(t) curves so obtained under a variety of choiceson fractals, e.g., diffusion on a fractal substrgté].
of parameters were then subjected to a fractal analysis. The The main problem in trying to characterize the roughness
main purpose was to correlate the resultant fractal dimenef a high-dimensional energy landscape, such as that exhib-
sions with the topology of the energy landscape, and to united by a protein, is the proper choice of a reaction coordi-
derstand the connection to the relevant physical parametersate. In this work we have choséime for this purpose. The
Both moIL and the method used to calculate the fractal di-advantage is that time is a universal coordinaelike any
mension of theV(t) curves are described in Sec. Il. of the spatial coordinatgsand one can think of the protein
There are several reasons for using a fractal approach isotential energy dynamics in terms of this coordinate as a
the analysis of the/(t) curves. First, there is an intimate random walk taking place on a rough substrate. Indeed, the
connection between “roughness” and fractality: much israte of sampling of conformation space in complex many-
body systems has been sholj@ito be a diffusive process in
the energy space. The universality of the time coordinate,
*Present address: Department of Chemistry, The University ohowever, can also be a drawback, in that it is not very sen-
California, Berkeley, CA 94720. sitive to the global topology of the energy landscape, but
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rather to the local structure of minima. Indeed, as will beHerei, j, k, and| are four sequentially connected atoms;
presented in detail in Sec. Ill, our results appear to contaimp; is the angle between the planes defined by atonjs
information mostly on the role ainharmonicityin determin-  andk andj, k, andl; apnjj is a constant which depends on
ing the fractal features of th€(t) curves. As such, the re- the types of atoms, j, k, andl and on the periodicity of the
sults reported here reflect more on the general properties ebtationm (see Ref[5] for detail9. Finally,

dynamics in anharmonic potentials than on protein dynamics
per se. These and other issues will be discussed and analyzed
in detail in Sec. IV. Conclusions and a summary are pre-
sented in Sec. V. Finally, to establish a simple reference ] ] ]
model, an analytical solution for the fractal dimension of theHerej, k, andl are all connected to atomanddy;, is the

V(t) curve in the Rouse model is presented in the Appen@ngle between the planes defined by atoms andk and
dixes. i, k, andl.

In the present work, we considered only the time depen-
dence of theotal potential energy due to all these terms.
The time series for a number of systems were generated us-
A. MoIL simulations ing numerical simulations employing either the canonical or

The MoIL program has been described extensively in thdnicrocanonical ensembles. As is customary, all simulations
literature[5]. In a nutshell, it takes as input the x-ray struc- Were preceded by a short initial annealifigeating period.
ture of a given protein from the Brookhaven Protein Data/l the “equilibration mode” (used mainly for testing the
Base, minimizes this structure, and runs molecular dynamic&inetic energies of all particles were rescaled in order to
MoIL makes it possible to simulate the energetics, dynamicg"€S€rve the constant temperaticanonical ensembleln
and thermodynamics of systems that vary in size, up to seyihe more important “no-equilibration mode(tiefault unless
eral thousands of atoms. It accounts for a number of differen’qjlem'oned otherwiseno such rescaling was attempted, and
energy contributions: van der Waals and electrostatin- the system was allowed to reach thermal equilibrium at the

covalen}, bonds, angles, torsions, and improper torsimos ~ SPeCified temperaturenicrocanonical ensemble
valeni: The exponents characterizing the fractal naturevf)

reported below derive from averages over groups of 25 runs
differering only in the initial random velocity distribution. A

V=2 Viaw+ > Verectosatic- 2 Voondt 2o Vangle number of tests were performed to ensure that our results are
not artifacts of the particular integration schemes used. We

checked that using more than 25 runs did not significantly

+ 2 Viorsiont 2 Vimproper (1) affect our results statistically. Between groups of 25 but for

fixed molecule type, the runs differed, e.g., in temperature,

The sums are over all interacting pairs of particles, and th@ddition of a water solvation shell, treatment of the terminus

Vimprope™ &ijki (Pijin —{(Piji )2 (7)

IIl. METHODS

components are given as follows: hydrogens, bond freezing, and deletions of residues. Most
runs started at a temperaturelgF=1 K and heated in 1 K
aa; bib per time-step increments to the final temperatiize at

Vvw=—1 ~ —5 (2 which the rest of the simulation was run. The total duration

Tij of the simulations, onc&; was reached, was usually 10 or

f25 psec, corresponding to 20000 or 50000 time steps, re-
spectively, of 0.5 fsec each. Exceptions to these conditions
include some shorter and longer runs, with some variation in
time-step size. They will be discussed in detail below.

ij
where a; and b; are constants that depend on the type o
atomi, andr; is the distance between atomandj;

diq;
Velectrostatic™ er. 3
4 B. Fractal analysis
where g; is the charge on atom and € is the dielectric The V(t) curves were subject to a standard fractal analy-
constant; and sis, with the purpose of calculating their fractal dimension
Viond= Kij (Fij —(rij)?, (4) y=2—a, (8)

where k;; is the bond force constant afa) denotes the ) . ] )
equilibrium value of coordinate; where« is the Hdder exponent, defined in Sec. 11 B.1.
Vangie= Kijk(Gij— (i), ) 1. General theory
. . Given any set of pointE={(x,y)}, one can estimate
where iy is the angle force constant, amky is the angle 6 fractal dimension by a number 6h principle) equiva-
between two sequential bonds, i.e., bonds connecting atomgnt procedures. A popular one is the so-called “Minkowski
i,j andj,k; and sausage,[13,14), where one draws a circle of radiRscen-
tered at each point i, and calculates the ar@gR) of the
Vo = oS bint). 6 union (“sausage’) of all such circles. The fractal dimension
torsion m§=:1 Amijkl (¢|]k|) (6) is then found as
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_ | In[A(D] ‘ S '
A T }
~slopglog(1/R),log A(R)/R?]}, 9

where the seconfapproximate equality follows by assum-
ing that the first equality holds for aR and multiplying it
throughout by log(R). This assumption is equivalent to a
linear relationship between logR)y and logA(R)/R?], so
thaty is found as the slope of the corresponding log-log plot.
If such a linear relationship is not found, it is taken in prac-
tice as an indication thd is not a fractal set. Conversely, if
at least one order of magnitude of linearity is observed, the
convention is to consideE a fractal set in that randd 5]. It
should be noted that, rigorously speaking, the curve of a
functionis generally not a self-similar fractal, but rather a \ \ ‘ . ‘ \ . . \ .
self-affineone. The latter refers to those cases wheretheaxe o 1 2 3 4 5 6 7 8 9 10
have different units, so that the scaling might be different in time (psec)

the two directions. Indeed, @eterministi¢ self-affine curve
satisfies the scaling relation

| energy (arbitrary units)

potential

FIG. 1. Total potential energy as a function of time for a single

run of BPTI at 310 K. Annealing firm 1 K occurs during the first
h(t)=b~“h(b t) (10) 0.4 psec, which are not shown. The highly irregular fluctuations are
' reminiscent of fractional Brownian noise.
which holds only on average for random processes. The ) ) )
“Hglder,” or self-affinity exponente, is 2— y [Eq. (8)] if comparison with several test cases, estimate the effect of
the curve is subjected to the Minkowski analysis of F3). time scales of different processes, and finally study the role
[16,17]. An example is the Weierstrass-Mandelbrot function®f @nharmonicity vs quasiharmonicity. All our MD simula-
[13] h(t)=S%___b~"%(1—cosh™), which satisfies Eq(10) tions started out from the folded states determined by x
n=-—w 1 & . . . . .

and whose fractal dimension is2x. An equivalent charac- ray), which we subsequently minimized using the Powell

terization of statistically self-affine fractals is through the 2/90rithm[5]. The protein was then heated finol K in in-
correlation function, which satisfies crements b1 K at every time step, with a random initial

velocity distribution, until the desired final temperature was
— _ 2\ __42a reached. Fractal analysis was performed on data from the
Ch(t)=([h(t+1tg) —h(to) ]~ D onstant temperature period only. Dynamics on all three pro-
This relation is expected to hold for durations shorter than deins was run for 25 psec, with a time step of 0.5 faeith
typical correlation timet,, found from a few exceptions, to be detailed belowractal analysis was
performed on the full 25-psec trajectories and on the first 10
psec of each such trajectory. This process was repeated for a
f dttr'(t) wide selection of temperatures in the range 1-800 K, with a

te="—F—, (120  focus on the room temperature regime.
f dtI'(t)
A. “Raw” results
wherel'(t) =(h(to)h(t+1t0)) —(h(te)?). A graph of a typicaV(t) curve is displayed in Fig. 1, for
. ' . BPTI at 310 K. We only present the time series after the
2. Analysis of time series temperature is stabilized, i.e., the first 0.4 psec during which

In the present case tliself-affing set under consideration annealing fran 1 K occurs are omitted. The noisy data are
is: E={(t,V(t))},, and the fractal analysis we applied is a Strikingly similar to “fractional Brownian motion’{13], and
numerically well-behaved version of Eq(9): the clearly suggest the use of fractal-type analysis. This is done
“ e-variation method.” We briefly describe the method in In Fig. 2, where the correspondingvariation analysis is
Appendix B; for a full description see Rdfl8]. We applied ~Shown. A straight line can be fitted with confidence to the
this analysis in order to extract the self-affinity exponenté-variation data over some 1.5 orders of magnitude-
(which we refer to simply as the “fractal dimension” and cade$. The Imear.regressmn coefficient in th.IS caseris
denote byy) of our V(t) curves. =0.998, where 1 indicates a perfect straight line. The fractal
dimension(slope in Fig. 2 is y=1.762+0.004, where the
uncertainty is due to the linear regression. All log-log plots
look strikingly similar to the one in Fig. 2, and have a similar

In this section we will present the findings from our nu- range of linearity. TheR? coefficient rarely went below
merical simulations. A discussion will be postponed to Sec0.99. Figure 3 presents all 25 fractal dimensignsbtained
IV. We will start by presenting a sample of “raw” simula- from the runs for BPTI under the above-mentioned condi-
tion results, then move on to a detailed presentation of eactions. The dashed line is the average fractal dimension,
of the three proteins, compare them to each other, performwahich in this case yieldy=1.75+0.02. The uncertainty in

Ill. RESULTS
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FIG. 4. Fractal dimension as a function of temperature for myo-

FIG. 2. e-variation[18] result for the curve shown in Fig. 1. A globin. Lines connecting data points are guides to the eye only.
straight line can be observed for about 1.5 decades. The bending at
high € values is due to finite size effects. shallow minimum around 10 K, which is, however, absent in

the full 25-psec simulations. The error bars are in fact too

this number reflects both the individual linear regression erlarge to discuss confidently a trend in the curves. However, it
rors on each data point, as well the standard deviation aboif clear thathe fractal dimension increases with the simula-
the average. The procedure illustrated in Figs. 1-3 was relon (or observation) time: on averagey~1.67 for 10 psec,
peated throughout this work. Thus eveyydata point in the ~and rises toy~1.72 for 25 psec. This behavior is seen in all
figures to follow is the result of an average over 25 fractalour results aheadsee Figs. 5 and)6As is clear from the

dimensions obtained from independent runs differing only ininset, the fractal exponen is essentially constant around
the initial velocity distribution. room temperature, apart from the rather sharp drop at 330 K.

The robustness of the results was tested by running the
simulations at 300 and 400 K with the heme group deleted.
) ) _ The removal of the heme group makes myoglobin consider-

_ Figure 4 shows the results of our simulations of myoglo-aply less compact, causing it to unfold rather easily. Hence
bin. Every y point was obtained as discussed above, so thge expected a significant change in the underlying dynamics.
error bars are due to both the averaging over the 25 dataowever, Fig. 4 showssquares and circlgghat the influ-

points and the linear regression error on each of these pointgnce of heme deletion is very minor, and results in a small
The dashedsolid) line connects they values resulting from  jncrease iny.

the 25-psed10-pse¢ runs. The inset shows the room tem-
perature results. In the 10-psec caseappears to have a C. BPTI

B. Myoglobin

The results of our simulations of BPTI are shown in Fig.

1.85 , . , S L .
5. The overall behavior is very similar to that of myoglobin.
1.95 T T T
1.85 T
1.80 I I I O—10 psec
190 | 180 =—‘9'-~-§—9 FO0===={O==0 25 psec ]
' L 10 psec, H,0 shell
1.75 A 10-25 psec period
= 1.75 18 Jﬁm ‘ . ‘ 1
Q220 270 320 370 1
> 1.80 | q ’%j |
1.70 i
1.75 | = 1
1.70 | .
165 L L L L L
0 5 10 15 20 25
run number 1.65 L ) )
. . 1 10 100 1000
FIG. 3. All 25 fractal dimensions calculated for BPTI at 310 K. TIK

Individual error bars are due to linear regression. The dashed line is
the average fractal dimension. FIG. 5. Fractal dimension as a function of temperature for BPTI.
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FIG. 6. Fractal dimension as a function of temperature for PPT. FIG. 7. Comparison among myoglobin, BPTI, and PPT for 10-
psec simulations.

The differences arél) overall the fractal dimensions are ity between PPT and BPTI, compared to the overall lower

higher_; and(2) the min_in_wum _iS more pronounceieyond fractal dimension values for myoglobin. This holds in both
statistical erroy, also visible in the 25-psec data, and hasy,e 10. and 25-psec cases.

shifted to 50 K. The increase i with increasing observa-
tion time for the longer simulation is unmistakable for BPTI
as well.

We also performed a 10-psec simulation including a water We performed further tests of the robustness of our results

solvation shell(diamond. Clearly, this has no significant DY running 10-psec simulations of PPT at 300 K, under dif-
effect on the results. ferent conditions, as shown in Fig. 9. There are 11 data

points in this figure, and the values are arranged in increas-
ing order. Let us briefly describe the results, noting that case

F. PPT under a variety of conditions

As a consistency test, we calculatgdor the complemen-

tary 1(.)_25 psec of the simulatigtrianglg. The re§ult IS & .7 is the “standard” on€(i.e., the result shown in Fig.)6
value in between the 10- and 25-psec values. Finally, the dip w - . S 4
The case “nax-helix” refers to a simulation in which the

gg_sssr\éidsifr?]rugggglogz ;;8 t:(e seen here as well as in thgntir.e. PPTa helix was delgted. Qnder these conditions a
' ' significantly smallery value is obtained. On the other hand,
data point 5 is the opposite case, where only thdelix
D. PPT remains. The correspondingis much closer to the reference
Our PPT simulation results appear in Fig. 6. The generayalue of data point 7. This showtkat thea helix is by and
qualitative similarity to BPTI and myoglobin is noticeable, large responsible for the observed fractal dimension
namely, the increase in overall fractal dimension with simu- Data point 2 corresponds to a freezing of all bond vibra-
lation time, and the shallow minimum at around 50 K. Sev-tions. The remaining motions are therefore proper and im-
eral additional details are noteworthit) We included a 50-
psec-long simulation at 1 Ksame 0.5-fsec time stgpand
the increase iry persistdfull circle). (2) We also performed 105
simulations in the “equilibration mode(see Sec. Il A
These are indicated as squares, and can be seen most clea
in the inset. The results are virtually identical to the usual
“no-equilibration mode,” demonstrating the agreement be- g5 |
tween the canonical and microcanonical ensembles for large.

T T T

(>100 atoms systems. The only exception is the point at -
800 K, where the “no-equilibration” value of drops rather
sharply.(3) A water solvation shelldiamonds, also in the 175 | i
equilibration modg again does not produce statistically sig-
nificant results. “—% Myoglobin
[=--=1BPTI
E. Comparison among myoglobin, BPTI, and PPT 165 L = PPT ,
Figures 7 and 8 compare the results for the three protein: ! 10 TIK 100 1000

in the 10- and 25-psec cases, respectively. These figures
merely recapitulate the results from Figs. 1-6, and show no FIG. 8. Comparison among myoglobin, BPTI, and PPT for 25-
new data. The main points to notice are the striking similarpsec simulations.
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1.77 | . 1 . @) : «
rozen
bonds § x X Xoxo X ~
1.75 | 100psec, | o B 4
\ 10 times 1.70 . ’
| larger ] . B . 1
178 T \ 250psec time step -
- \ trajectory, : X PPT, 10 psec
1.71 only no 10 25psec ] X PPT, 25psec
GEAR ochelix €9l segments 185 |- 1 @ 16-ALA, 10psed]
| integrator (no equil.) |
1.69 plowiy O w1 m 16-ALA, 25psec
@ no a-helix quit 1.60 [1.80 - * - O NacCl 1(;pSeC i
1.67 1 17 L X X A NaCl, 25psec
1.65 1 170 L .
1 ) 1 2
1 63 L L L L L L L L L L L 1 50 L L L
1 2 3 4 5 6 7 8 9 10 M 200 250 300 350
case No. T[K]
FIG. 9. A compariso_n_ of results for PPT at 300 K and 10 psec, EF|G.10. A comparison between PPT, 16-alanine, and N4C!
under a variety of conditions. atoms. Error bars have been omitted for clarity and are replaced by
small dots.

proper rotations and center of mass translations. Since the

deV|at|or_1 from the reference valu_e is small, it appears that rugged. This is because all the residues are identical so there
the rotations are largely responsible for the observed fractal, . Lo . .
dimension is no frustration due to conflicting interactions between dif-

Data point 3 is the result when a different integrator isferent segments of the polymeievertheless each residue

used, which appears to have only a minor effect. This teslf'as internal conflicting interactions, giving ris_e to some rug-
was performed to check whether the results are a consg€dnesk The ground state of the nonpolymeric NaCl cluster
quence of numerical instabilities. is easily accessiblgs]; i.e., starting from a disordered state,
Data point 4 is another deletion experiment, this time ofit finds its crystalline ground state well before the end of our
just the SER residue. This has a very small effect which10-psec simulation. Thus it has neither the protein topology,
curiously enough, is slightly larger than leaving only #he nor its rugged energy landscape. The results of our simula-
helix, as indicated in case @lthough due to the large error tions are shown in Fig. 10, which displays 10- and 25-psec
bars in fact this effect cannot be taken too seriously runs of 16-alanine and NaCl at 250 K, as well as 10-psec
To calculate they corresponding to data point 6, the ter- runs at 300 K, and 10-psec runs for NaCl alone at 1 K. For
minal hydrogens were treated as “extended”: unlike in allclarity of presentation the error bars have been removed.
other cases, the hydrogens were not treated as atoms kdbwever, it should be remarked that when the error bars are
were “absorbed” into the carbons. This modifies the carbontaken into account the results for a given temperature over-
mass and radius to appropriate effective values. The effectap. Indeed, it is striking thahe results for polyalanine and
however, is negligible. NaCl do not differ significantly from those for PPIh fact
Data points 8 and 10 relate to using the equilibrationfor 250 K, NaCl and PPT agree almost exactly, and the
mode and adding a water solvation shell, respectively, whickigreement for 10 psec at both 250 and 300 K is quite close.
(as shown also in Fig.)6do not have a significant effect opy 4 1 K does there seem to be a significant difference
either. between NaCl and PPT. 16-alanine has loweralues than

I Dzatta.potint QtLep?rt§ t?e result ;r_o_rg ‘3 Si”Q'et 2t50'pseCPPT, but not very much so. Barring accidental agreement,
ong trajeclory: h€ trajectory was divided up Into ten Seg~,qoqq ragyts clearly indicate tha¢ither the protein topol-

ments of 25 psec each, and the were averaged. Data point s
11 is due to a 100-psec-long trajectory which, however, empgy, nor the rugged energy landscape are essential in order

ployed a time step of 5 fsegen times larger than the usual to obtain frchaI \(t) curves, with fractal dimension close to
time step. In accordance with the observation of a fractal that of realistic proteins
dimension which increases over time, the resulting average

value. In order to investigate systematically the role of the total
duration of the simulation and the correspondingly partici-
G. PPT vs test systems: Polyalanine and NaCl pating physical processes, we ran simulations of 20 000 time

In order to estimate to what extent our results reflect propSteps of PPT at 300 K, with progressively smaller time steps.
erties unique to realistic proteins, we present calculations fof his is different from the bulk of our simulations, where a
two test systems: poly16)-alanine and a 40-atom cluster of constant time step of 0.5 fsec was employed, so care should
NacCl. Polyalanine folds into an helix, so it has the crucial be exercised in the comparison. The main point is that by
part of the protein topologyrecall points 1 and 5 in Fig.)9  employing a smaller time step, previously inaccessible fast
but the underlying energy landscape is not expected to bmotions are now observable. The results are shown in Fig.
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FIG. 11. 20 000 time step simulations of PPT at 300 K with FIG. 12. 10-psec simulation results of PPT with the full poten-
varying total duration X axis). Results to the left of the arrows are tial (solid line), and just the quasiharmonic pddashed ling

in th hysical . .
n the tnphysical range such transitions at temperatures on the order of 1 K. The

glinsensitivity of y to temperature therefore appears to rule out
the first hypothesis: at the low temperature end one would
expect the protein to be confined to a single minimum within
the time scale of our simulations, and the fractal dimension
¥(7)=1.60+0.060 I 7), (13) to be sma_lle_:r as a consequence. Thus while inc_reas_ed access
to local minima is consistent with the growth gfwith time,
for 0.1 psesr<100 psec. The regression coefficient isit is inconsistent with the lack of temperature dependence.
R 2=0.999. Figure 11 thus demonstrates decisively tha We conclude that the fractal dimension measured in our
indeed strongly dependent on the total observation fifhe ~ Simulations is not a good probe of tigdobal potential en-
Below 7=100 fsec(to the left of the arrows in Fig. 1  ergy landscape topology.
the behavior ofy appears rather erratic, and we believe this  This brings us to the second hypothesis which, as will be
is due to numerical error. Indeed, the fastest motions in th@rgued shortly, is consistent withoththe observed time and
protein are the OH or CH stretches, with a period of about 1d€mperature dependencies. According to this hypothesis, the
fsec. Thusr=10 fsec would most likely not probe even a Primary factor determining the fractal dimension of the po-
single period, and can confidently be regarded as the lowdential energy curves is the self-generatthamical noise
physical limit of our simulations. We turn next to an analysisnamely the very broad frequency spectrum appearing in the

11. It is remarkable that the fractal dimension obeys an
most perfect logarithmic law over three orders of magni-
tudes,

and discussion of our results. dynamics. This spectrum and the resulting self-generated
noise is a consequence of taeharmonicityin the potential,
IV. DISCUSSION as is demonstrated convincingly in Fig. 12. Shown in this

figure, along with the full 10-psec simulation of PPT at 300

The most striking observation presented in Sec. Il is theK, are the results of the same simulations with interaction
rise of the fractal dimension with time. It sugge&as least  terms V,qw, Velectrostatio @Nd Viorsion deleted from the total
two likely hypotheses for its explanatioAs time evolves potential energy of Eq.l). Even with these terms absent in
(1) there is increased access to local minima and “fine structhe potential energy we expect the system to exhibit quasi-
ture” of the potential energy landscape; af@® low fre-  harmonic behavior only at sufficiently low temperatures.
guency vibrations and energy transfer between modes b&his is because anharmonicities are implicitly present in the
come increasingly activated. potentials given in Eq€4) and(5). This becomes clear if the

The first of these attributes the growth jnover time to  angle and stretch potentials are expressed in Cartesian coor-
the increased roughness of the sampled potential energiinates. Thus at high enough temperatures the effect of the
landscape. In other words, the protein *visits” more andimplicit anharmonicities should be evident. The results in
more local minimaor basins of attractionas it samples its Fig. 12 show these effects rather dramatically: there is a
conformational space. This process is consistent with an instrong increase ofy as the temperature is increased. This
crease in fractal dimension, since the fractal potential energghows that anharmoniciteven when included in describing
landscape is not sampled all at once by the protein: insteaititernal degrees of freedom of the protgiisof paramount
the inner details are only progressively revealed. Howevernimportance in determining at high temperatures. It is inter-
as shown by Czerminski and Elbgt], activated transitions esting to note that the values of at low temperatures are
between similar conformational structures confined to &agreater than that for the Rouse model, which has an explicit
small set of minima(separated by barriers on the order of quadratic Hamiltoniariin Cartesian coordinatgst all tem-
kgT) can occur atoom temperatur@n a time scale of sev- peratures. This strongly implies that the valueysf 1.5 may
eral picoseconds. A much larger time scale is required foindeed be a lower bound for the systems considered here. At
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high temperatures we find that the valuesydfor PPT con-  harmonic, so as expected it has lowewalues.
taining only Eqs(4) and(5) are, within error bars, nearly the It is thus seen that the “anharmonicity” hypothesis is
same as that obtained with the full potential. This also indi-capable of accounting for all of the salient features present in
cates that nonlinearities are the main origin of the apparer@ur results for the fractal dimension of tM§t) curves. The
universal description of fractality of potential energy sur-role of multiple minima and ruggedness of the energy land-
faces in many-body systems. scape seems to be more restricted: it is apparently not the
The mechanism we propose is thus as followét) is a  9lobal topology which is measured by. Nevertheless, it
sum over many anharmonic terms, the number of which ishould be noted th_apfferentmultlple minima will generally
proportional to the number of atoms in the protein. Thesd€ad to a denser filling of the frequency spectrum or to the
anharmonic terms creatvertoneswhich effectively fill the ~ @PPearance of bands, which may overlap and thus induce

frequency spectrum and create a quasicontinuum. Now, ofdditional intermode coupling.

the one hand, as time evolvéat constant temperatyrboth An important remaining issue concerns thalue of y

very low and very highpreviously inactivé frequency com- observed in our simulations: defl_nltely greater than (]3;_5
ponents become activated: the low frequencies are onl§€Pt Perhaps for the=100 fsec simulation, Fig. 31A pri-
sampled on long times, whereas the high frequencies corr&i; it is not clear what the lower limit of for polymerlike
spond to highly energetic modes which must await energpyStéms subject to the usual dynamitike Newtonian or
transfer before equilibration sets in. On the other hand, as@ngevin should be. A plausible lower limit of 1.5 is de-
temperature increase@t constantr) intermode coupling 'ved in the Appendixes for the Rouse model. The Rouse
causing energy transfer from rigid modes to soft modes ignodel considers a purely harmonic set of beads under the
facilitated, and more frequency components are activatedifluénce of a Gaussian random force. In our simulati@ns
Thus in both cases one expects an increase in dynamicHle “no-equilibration” microcanonical modethere is no
noise, with a corresponding increase in the fractal dimensiof@ndomness except for numerical truncation errors and “ran-
of the signal. This accounts for the behavior seen in Figsdomness” due to chaos caused by the anharmonic terms.
4—6. Unfortunately we have not been able to study whethelfowever, we findy~1.5 as the result of our quasiharmonic
the fractal dimension converges on a limiting value upon fullSimulations at very low temperatur@ig. 12). As argued

equilibration (at least as a function of temperature this does?P0Ve, this actually corresponds to the low-anharmonicity
not seem to be the case—see Figs. 7 apdsi®ice this re- limit, so is in agreement with the result for the Rouse model,

quires prohibitively long simulationg7]. provided the truncation errors and/or the chaotic “random-

The behavior of the quasiharmonic case observed in Fig}€SS” can be modeled as a Gaussian random force acting on
12 might seem curious in light of these arguments: after allthe protein(this is a speculation Increasing the degree of
in the purely harmonic case there is no intermode Coup|ing§1_r1harmon|0|ty can only increase the fractal dimension of the
nor any dynamical noise. However, we recall that due to théignal, by the mechanisms discussed before. These argu-
use of non-Cartesian coordinafese Eqgs(4), (5), and(7)], ments then show that the Rouse model (esult cpuld thus
a certainresidual degree of anharmonicitgmains with re- ~ Serve as dower boundto they values found in our simula-
spect to the Cartesian components. At very low temperature4ons.
vibrations and rotations occur very close to their equilibrium
values, and the anharmonic effects are barely noticeable.
Only as the temperature rises do these vibrations and rota-
tions start to deviate significantly from their equilibrium val-  In this work we have studied the fractal properties of the
ues and gain anharmonicity. This explains the risg of the  total potential energyw as a function of time for several
guasiharmonic case. In contrast, the other tefEgs. (2), realistic proteins. We performed simulations at a wide range
(3), and(6)] make anharmonic contributions at all tempera-of temperatures and a number of time scales. Our main con-
tures, which accounts for the relative constancyyadh this  clusion is that the fractal behavior seems to be caused by the
case. self-generated dynamical noise due to intermode coupling

The different behavior of PPT and BPTI vs myoglobin and equilibration promoted by anharmonic effects. There are
can be attributed to theizeof these proteins. Myoglobin has universal aspects to this behavior, as exemplified by the
156 residues, whereas PPT and BPTI only have 41 and &§imilarity between totally different systems such as PPT and
residues, respectively. Therefore, at any given temperature NaCl. Thus it cannot serve to characterize individual proteins
takes longer to activate the overtones that give rise to thand their energy landscape, but is rather a property common
self-generated noise in myoglobin than in either PPT otto all sufficiently large and anharmonic systems. We believe,
BPTI, which explains the lower fractal dimension of myo- however, that probing the fractal aspects of protein potential
globin in Figs. 7 and 8. The proximity in size between PPTenergy landscapes is a useful approach to the characteriza-
and BPTI, on the other hand, is the reason for their quantition of the ruggedness of these landscapes. To achieve this, it
tatively similar behavior. A related argument makes cleawould be very interesting to examiné as a function of
why deletion of the heavy heme group from myoglobin appropriatespatial coordinates, rather than The question
yields a highery (Fig. 4): without heme the energy redistri- remains of whether there are other ways leading to useful
bution among the modes occurs faster. geometrical characterizations of the energy landscape, e.g.,

Also the curious similarity between NaCl and PPT can bedentification of multiple minima and maxima by real and
attributed to anharmonic effects: NaCl, with its purely Cou-imaginary frequencieg3].
lombic interactions, is of course strongly anharmonic, even Note added While this paper was in the final stages of
more so than PPT. On the other hand, polyalanine is morpreparation we became aware of an article by Gagtial.

V. SUMMARY AND CONCLUSIONS
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[19]. The authors concluded that the time dependence of the 1

mean-square displacement of crambin around the crystal (gi = KRi—Ry)+1y, (AS5)
structure is described by an effective fractal expongnt

~1.60 (for t long). This result was interpreted as indicative dR

of multi-basin dynamics which would be typical in a rugged SN —K(Ry—Ry_1)+fy. (A6)
energy landscapis]. dt

The for nd th ntial defin im le through
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APPENDIX A: AN ANALYTICALLY SOLVABLE an = an =0.

EXAMPLE: THE ROUSE MODEL

It is useful to have a simple reference model in the back-The random forces are assumed to be Gaussian, i.e.,
ground to compare the numerical results of Sec. Il with. Tod-function uncorrelated:
this end, we consider the Rouse mokeM), which is stan-

dard in polymer theory. It describes a polymer as a se\ of (fo(1))=0, (A9)
beads located alR;,R,, . .. ,Ry) connected along a chain,
where each beath) undergoes Brownian motion under the (Fa(Dfm(t))=2LkgTS(N—m) S(t—t").

influence of random forcé,(t). It should be remarked that
this is essentially different from our simulations, in which no In the continuum limit the potential energy becomes
randomnessexcept for numerical truncation errors and cha-
otic “randomness” due to anharmonicjtis present. Never- k(N [dR,\?
theless, it useful to study the RM in order to see analytically U= EJ n( an )
how a fractalV(t) can come about.

The excluded volume and hydrodynamic interactions ar
disregarded in the RM. The dynamics is generally describe
by the Langevin equatiof20]

(A10)
0

he last three sets of equations define the continuum RM.

1. Normal coordinates

1 9 We are interested in calculating the fractal scaling of the
+ EkBTE R Hom- potential energyJ (t) defined in Eq(A10). For this purpose

m m it is convenient to transform to normal coordinates. It can be
(A1) shown that in terms of the coordinates

an _sn s ou
E n(t)_m nm’ m(t)_ﬁm

In the RM the mobility tensor is assumed to be isotropic,

1 (N
Xp= —f dncogpmn/N)R,(t), p=0,1,2...,
NJo

I
Hnm=55nm, (A2) (A11)
the Langevin equatiofA8) becomes

and the interaction potential is taken to be harmonic,

dX,

iy Gogr = keXot T, (A12)
U=22 (Ri—Ry1)? (A3)
n=2 where

so that Eq.(A1l) reduces to Lo=N¢, (A13)
dR =2N¢ fo =12,... Al4
¢ dtnz_k(an_Rn+l_Rn—1)+fn gp ¢ T o ' ( )

_27'r2kp2

(n=2,3,...N—1), (A4) K="J

for p=0,12..., (A15)
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and the forces satisfy 2. Scaling of the potential energy
We will now present a calculation of the fractal scaling of
(fp(1))=0, (A16)  the potential energy in the RM, as defined in Ebl) [21]:
(fo(Dfg(t"))=2¢ kg Topas(t—t’). (AL17) Cu(t)=([U(t)—U(0)1?). (A21)

In this representation the random forces as well as the m
tions of theX,'s are independent, so that the motion of the
polymer is decomposed into independent modes. Indeed, it is
easily verified that the formal solution to EGA12) is

qnsertmg the expression fdr,, into Eq. (A10) and expand-
ing, yields

a2 N
u:2k(ﬁ) > P gXp(t)-Xq(t)
p.q=1

1t ,
Xp(t)= g—f dt' e~ (¢ )’Tpfp(t’), (A18)
p — o
N
Where X Jo dnsin(pmn/N)sin(qmn/N). (A22)
2
7= % = % = ;27- (A19)  The integral evaluates td\{2) 4, so that
1
Finally, the inverse transform of EgA11l) is
U= k—E p2X2(1). (A23)

o

Ra=Xe+t22, X,co n/N). A20
oo pzl peospn/N) (A20) Thus the fluctuation can be written as:

N 2

Cu(t)= % <[21 pZ[XSm—XS(on”
N
>

2\ 2
=(%) =, P2 G2[(X2(t)X3(1)) — 2(X2(1)X3(0)) +(X2(0)X2(0))]. (A24)

Inserting the formal solution for the normal coordinafEs. (A18)], the averages can be calculated from

1 [t t t’ t’ ry
<X§(t)X§(t’)>=—2—z§§f dtlf dtZJ dtgf dtye” 2ttt/ e~ (2 sl (£ (1) (1) fy(ta) - Fo(ts)).
p q — o0 — 0 — 00 — o0
(A25)

To proceed, the averages over the forces must be evaluated. This can be done with the help of Wick's[#tBorem

(Xn Xn," - .xn2p>: (Xm,Xm,) " - '(szpflxmzp% (A26)

all pairings

where thex,’s are Gaussian random variables. Employing the orthogonality relations frofAEd) thus yields

<fp(tl>-fp(t2>fq(t3>~fq<t4)>=<2kBT)2[zp§q5<t1—t2>6<t3—t4>+éséf,qa(tl—tsm(tz—uHéﬁaf,qé(tl—u)&(tz—ts)(]. )
A27

In addition, we need the rule

where® (x) is the Heaviside step function. Combining these results sthanctions simplify the expression in EGA25) as
follows:
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1 [t t/ ) 6 in(t,t’ ' 2
(XE(OX3(t)=(2kgT) [ v D J dtze” —ts><1ffp+1/n>+2?"§< f T g e -2tl>/fp) }
psqy =« — b —»

2 72
2 22 mint,t') —t— t]/Tp:| (A29)
p

=(2kgT)?

Tpt 7q
Inserting this into Eq(A25) yields

2
§p§q §

Using the definitions of the various parameters appearing here, the final result becomes

TpTq

k2 2 N
Cu(t):<W) (2keT)? X p?q? S (1-e2'7)5, } (A30)
p.a=

N N

1
E 2+42 (1— e—272<t/7)(p2/N2))

Cul=(eT? 3 5

(A31)

The time dependence @fy(t) for large but finiteN arises from the terrﬁ'g= 1exp(—277tp% ™N?). To derive an expression for
v, it is useful to approximate the above sums by integrals. Defiring/N, y=a/N, we have

1 1 2 2
AN+ Wj —4| dxe 27 Wnx (A32)

1IN X ‘ty? N

Cu(t)m(kBT)z

The first integral is easily evaluated after a transformation tdized data. Systematic errors which plague other methods are
polar coordinates, and the second corresponds to the errefiminated in thee-variation method.
function (in the second integral the error in taking\E 0 is If the graph of a functiorf(x) is fractal, there exists st
negligible least one part of the domaji®,1] of f on whichf is nowhere,
or almost nowhere differentiable. {f(x,x") is the slope of
In N erfyo 5 the line connectindx,f(x)) and(x’,f(x")), fractality is re-
4N+2”W_2‘/;W » 0=27UT ated to the following property: syggx,x’)—x'—x. It is
(A33) therate of growthof this convergencéasx’ tends tox) that

determines the fractal dimension. In order to measure this
In accordance with the preceding comments, we next takBehavior, Dubuet al. introduced the ‘¢ variation” of f:

the t<r limit. Then, using erfg)~(2/\/7)[x—x3/(3x 1)

Cy(t)=(kgT)?

+x5/(5%21)— - - -] to the first nontrivial(third) order, we
can write 1
V(e,f)=f v(X,€e)dx, (B1)
5 InN 1 0
Cu(t<n)~(kgT)? aN+27 7 —4| 1- 20
8?2 22— where the ‘e oscillation” v(x,€) is
~(kgT) ——~t< ), (A34)
3 7
where in the last line the time-independent terms were ig- X. €)= sun., F(x" ) —info, f(x! B2
nored, and ultimatelyy=3. Thus the Rouse model has a 0(X €)=SUp er o0 (X) ~infr e o f(X'), (B2)

potential energy fluctuatlons which have a fractal dimension

of 3, just like a classical, fully correlated random walk.
and whereR (x)={se[0,1]:|x—s|<¢€}.

Since f is continuous,V(e,f)—e—00. It is the rate of
growth of V(e,f) that yields the fractal dimension, émore

Dubuc et al. [18] introduced a method particularly well precisely the self-affinity exponenty. The corresponding
suited for the evaluation of the self-affinity exponent. Theylog-log plot for the calculation of y s
demonstrated that their method has the most stabd ex-  [log(1/e),log(V(e,f)/€?)], with the exponent given by the
ponent in comparison to a variety of other methods, such ag-slope.
box counting, Minkowski-Bouligand, and power spectrum. Following is aMATHEMATICA program which implements
All methods are equivalent in the continuous domain, butan algorithm to calculate the variation. The algorithm
significant differences arise when they are applied to digiclosely follows the implementation suggested in R&8].

APPENDIX B: e-VARIATION METHOD
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(ko sokookok ok ok ook ook )
(* Initialization: *)
(ke ek ok o ok ook ok ke ok ke ok ok ok )

<<Statistics‘LinearRegression‘;

k[i\_] =i ;
( * Change this to a more spaced function if necessary;
the restriction is k[il-k[i-1]<k[i-1]. *)

data = Table[ {j dx, £[jl}, {j,Length[£f]1} 1 ;
(* £ is the function whose self-affinity exponent is being
calculated; dx is the spacing *)

datalength = Length[ data ] ;

Clear[u,uu,uuu,b,bb,bbb] ;
(* The functions "u" and "b" are respectively
upper and lower bounds to f. *)

(***************************)

(* variation calculations: *)
(koo ok stk ok ook ok ok ok ook ok ok )

Table[ ul1,n] = Max[ Table[ datal[j,2]1), {j,n-k(1],n+k[1]1} ] 7,
{n,1+k[1] ,datalength-k[11} ] ;
ul1,0] = ul1,1] = Max[ Tablel datal[j,2]], {j,1,1+k(11} ] ] ;
ul[l,datalength+1] = u[l,datalength] = Max[ Table[ datal[lj,2]],
{j,datalength-k[1] ,datalength} ] ] ;
Table[ b[1,n] = Min[ Tablel[ datal[j,2]], {j,n-k[1],n+k[11} ] 1,
{n,1+k[1] ,datalength-k[1]} ] ;
Min[ Tablel datallj,2]], {j,1,1+k[11} 1 1 ;
= b[1,datalength] = Min[ Table[ datal[j,2]],
{j,datalength-k[1],datalength} 1 ] ;

b[1,0] = b[1,1] =
b{1,datalength+1]

imax = Floor[ datalength/5 ] ; (* total no. of iterations *)
R = Floor[ datalength/2] ;

(* calculating the epsilon-variation: *)
(* boundary conditions: *)
For[ n=0,n<=R+1,n++,
uwufn] = uli,n] ;
bb[n] = bli,n] ;
1;
sum[1] = Sum[ w[1,n]-b[1,n], {n,R} ] ;
For[ i=2,i<=imax,i++, (* iterations of the algorithm *)

delta = k[i]-k[i-1] ;

For[ n=1,n<=R,n++, (* running over the data values *)
wau[n] = Max[ Table[ uulm], {m,n-delta,n+delta} 1//N 1 ;
bbb[n] = Min[ Table[ bb[m], {m,n-delta,n+delta} 1//N ] ;

1

sum[i] = Sum[ wuuln]-bbb[n], {n,R} ] ;

For[ n=1,n<=R,n++, (* running over the data values %)
uuln] = uwuuln] ;
bb[n} = bbb[n] ;

1;

(* total variation: %)
res = Table[ {1/k[il, 1/k[il\"2 sum[i]}, {i,imax} 1//N ;

(* regression: *)
reg = Regress[ Logl[10, res 1,{1,x},x] ;

Print[ OutputForm[ reg ] ] ; (* slope is gamma *)
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