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Fractal analysis of protein potential energy landscapes
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The fractal properties of the total potential energyV as a function of timet are studied for a number of
systems, including realistic models of proteins~pancreatic polypeptide, bovine pancreatic trypsine inhibitor,
and myoglobin!. The fractal dimension ofV(t), characterized by the exponentg, is almost independent of
temperature, and increases with time, more slowly the larger the protein. Perhaps the most striking observation
of this study is the apparent universality of the fractal dimension, which depends only weakly on the type of
molecular system. We explain this behavior by assuming that fractality is caused by a self-generated dynamical
noise, a consequence of intermode coupling due to anharmonicity. Global topological features of the potential
energy landscape are found to have little effect on the observed fractal behavior.@S1063-651X~99!11402-8#

PACS number~s!: 87.15.2v, 36.20.2r, 61.43.Hv
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I. INTRODUCTION

The energy landscape of proteins near the folding te
perature is often described as complex@1,2#. That is, the
landscape is expected to be rugged and composed of m
minima and maxima, separated by barriers of vary
heights, the result of frustration due to conflicting intera
tions between different segments of the protein. The comp
nature of the underlying energy landscape has been dem
strated using ergodic measures@3#, and by exact enumeratio
of minima and transition states of a tetrapeptide@4#. The goal
of the present work is to investigate this energy landsc
under a variety of conditions using tools from fractal ana
sis. The trajectories needed for analysis were generated u
MOIL, a molecular dynamics~MD! program which allows
realistic simulations of small proteins using semiempiri
potentials@5#. Using MOIL, the total potential energyV(t)
was calculated as a function of time, for several proteins
choice@PPT ~pancreatic polypeptide!, BPTI ~bovine pancre-
atic trypsine inhibitor! and myoglobin# at constant tempera
ture. For comparison, we also simulated polyalanine
NaCl. TheV(t) curves so obtained under a variety of choic
of parameters were then subjected to a fractal analysis.
main purpose was to correlate the resultant fractal dim
sions with the topology of the energy landscape, and to
derstand the connection to the relevant physical parame
Both MOIL and the method used to calculate the fractal
mension of theV(t) curves are described in Sec. II.

There are several reasons for using a fractal approac
the analysis of theV(t) curves. First, there is an intimat
connection between ‘‘roughness’’ and fractality: much

*Present address: Department of Chemistry, The University
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known about the generation of rough surfaces using fra
algorithms and, conversely, on the analysis of rough surfa
in fractal terms@8,9#. In this sense the notion of the rough
ness of the energy landscape of proteins naturally calls f
fractal analysis, which canquantifythe degree of roughness
Second, fractal dimensions often show up as ‘‘universal
ponents,’’ and are related to the critical exponents of ph
transition theory@10#. Conversely, there is a certain unive
sality in protein dynamics, in the sense that most prote
exhibit a folding transition and multiexponential relaxatio
times. This suggests a common feature in their energy la
scapes. While the rapid transition to folded states in sm
proteins is best rationalized by the existence of a domin
native basin of attraction or a folding funnel@2,11#, the re-
laxation phenomenon might well be related to the roughn
of the energy landscape, and hence to its fractal dimens
A ‘‘universal’’ fractal dimension would be a strong chara
terization of what it is that is common to different energ
landscapes. Third, establishing that the energy landscape
protein is indeed fractal would allow one to relate the subj
of protein dynamics to a whole body of work on dynami
on fractals, e.g., diffusion on a fractal substrate@12#.

The main problem in trying to characterize the roughn
of a high-dimensional energy landscape, such as that ex
ited by a protein, is the proper choice of a reaction coor
nate. In this work we have chosentime for this purpose. The
advantage is that time is a universal coordinate~unlike any
of the spatial coordinates!, and one can think of the protei
potential energy dynamics in terms of this coordinate a
random walk taking place on a rough substrate. Indeed,
rate of sampling of conformation space in complex man
body systems has been shown@3# to be a diffusive process in
the energy space. The universality of the time coordina
however, can also be a drawback, in that it is not very s
sitive to the global topology of the energy landscape,
f
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rather to the local structure of minima. Indeed, as will
presented in detail in Sec. III, our results appear to con
information mostly on the role ofanharmonicityin determin-
ing the fractal features of theV(t) curves. As such, the re
sults reported here reflect more on the general propertie
dynamics in anharmonic potentials than on protein dynam
per se. These and other issues will be discussed and ana
in detail in Sec. IV. Conclusions and a summary are p
sented in Sec. V. Finally, to establish a simple refere
model, an analytical solution for the fractal dimension of t
V(t) curve in the Rouse model is presented in the App
dixes.

II. METHODS

A. MOIL simulations

The MOIL program has been described extensively in
literature@5#. In a nutshell, it takes as input the x-ray stru
ture of a given protein from the Brookhaven Protein Da
Base, minimizes this structure, and runs molecular dynam
MOIL makes it possible to simulate the energetics, dynam
and thermodynamics of systems that vary in size, up to s
eral thousands of atoms. It accounts for a number of differ
energy contributions: van der Waals and electrostatic~non-
covalent!, bonds, angles, torsions, and improper torsions~co-
valent!:

V5( VvdW1( Velectrostatic1( Vbond1( Vangle

1( Vtorsion1( Vimproper. ~1!

The sums are over all interacting pairs of particles, and
components are given as follows:

VvdW5
aiaj

r i j
12

2
bibj

r i j
6

, ~2!

where ai and bi are constants that depend on the type
atom i, andr i j is the distance between atomsi and j;

Velectrostatic5
qiqj

er i j
, ~3!

where qi is the charge on atomi and e is the dielectric
constant; and

Vbond5ki j ~r i j 2^r i j &!2, ~4!

where ki j is the bond force constant and^x& denotes the
equilibrium value of coordinatex;

Vangle5k i jk~u i jk2^u i jk&!2, ~5!

wherek i jk is the angle force constant, andu i jk is the angle
between two sequential bonds, i.e., bonds connecting at
i , j and j ,k; and

Vtorsion5 (
m51

am,i jkl cosm~f i jkl !. ~6!
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Here i , j , k, and l are four sequentially connected atom
f i jkl is the angle between the planes defined by atomsi , j ,
andk and j , k, andl ; am,i jkl is a constant which depends o
the types of atomsi , j , k, andl and on the periodicity of the
rotationm ~see Ref.@5# for details!. Finally,

Vimproper5m i jkl ~F i jkl 2^F i jkl &!2. ~7!

Here j , k, andl are all connected to atomi, andF i jkl is the
angle between the planes defined by atomsi , j , andk and
j , k, and l.

In the present work, we considered only the time dep
dence of thetotal potential energyV due to all these terms
The time series for a number of systems were generated
ing numerical simulations employing either the canonical
microcanonical ensembles. As is customary, all simulati
were preceded by a short initial annealing~heating! period.
In the ‘‘equilibration mode’’ ~used mainly for testing!, the
kinetic energies of all particles were rescaled in order
preserve the constant temperature~canonical ensemble!. In
the more important ‘‘no-equilibration mode’’~default unless
mentioned otherwise!, no such rescaling was attempted, a
the system was allowed to reach thermal equilibrium at
specified temperature~microcanonical ensemble!.

The exponents characterizing the fractal nature ofV(t)
reported below derive from averages over groups of 25 r
differering only in the initial random velocity distribution. A
number of tests were performed to ensure that our results
not artifacts of the particular integration schemes used.
checked that using more than 25 runs did not significan
affect our results statistically. Between groups of 25 but
fixed molecule type, the runs differed, e.g., in temperatu
addition of a water solvation shell, treatment of the termin
hydrogens, bond freezing, and deletions of residues. M
runs started at a temperature ofTi51 K and heated in 1 K
per time-step increments to the final temperatureTf , at
which the rest of the simulation was run. The total durati
of the simulations, onceTf was reached, was usually 10 o
25 psec, corresponding to 20 000 or 50 000 time steps,
spectively, of 0.5 fsec each. Exceptions to these conditi
include some shorter and longer runs, with some variation
time-step size. They will be discussed in detail below.

B. Fractal analysis

The V(t) curves were subject to a standard fractal ana
sis, with the purpose of calculating their fractal dimensio

g522a, ~8!

wherea is the Hölder exponent, defined in Sec. II B.1.

1. General theory

Given any set of pointsE5$(x,y)%, one can estimate
their fractal dimension by a number of~in principle! equiva-
lent procedures. A popular one is the so-called ‘‘Minkows
sausage,’’@13,14#, where one draws a circle of radiusR cen-
tered at each point inE, and calculates the areaA(R) of the
union ~‘‘sausage’’! of all such circles. The fractal dimensio
is then found as
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g~E!5 lim
R→0

F22
ln@A~r !#

ln~R! G
'slope$ log~1/R!, log@A~R!/R2#%, ~9!

where the second~approximate! equality follows by assum-
ing that the first equality holds for allR and multiplying it
throughout by log(1/R). This assumption is equivalent to
linear relationship between log(1/R) and log@A(R)/R2#, so
thatg is found as the slope of the corresponding log-log p
If such a linear relationship is not found, it is taken in pra
tice as an indication thatE is not a fractal set. Conversely,
at least one order of magnitude of linearity is observed,
convention is to considerE a fractal set in that range@15#. It
should be noted that, rigorously speaking, the curve o
function is generally not a self-similar fractal, but rather
self-affineone. The latter refers to those cases where the a
have different units, so that the scaling might be differen
the two directions. Indeed, a~deterministic! self-affine curve
satisfies the scaling relation

h~ t !5b2ah~b t!, ~10!

which holds only on average for random processes.
‘‘Hö lder,’’ or self-affinity exponenta, is 22g @Eq. ~8!# if
the curve is subjected to the Minkowski analysis of Eq.~9!
@16,17#. An example is the Weierstrass-Mandelbrot functi
@13# h(t)5(n52`

` b2na(12cosbnt), which satisfies Eq.~10!
and whose fractal dimension is 22a. An equivalent charac-
terization of statistically self-affine fractals is through t
correlation function, which satisfies

Ch~ t !5^@h~ t1t0!2h~ t0!#2&;t2a. ~11!

This relation is expected to hold for durations shorter tha
typical correlation timetc , found from

tc5

E dt tG~ t !

E dt G~ t !

, ~12!

whereG(t)5^h(t0)h(t1t0)&2^h(t0)2&.

2. Analysis of time series

In the present case the~self-affine! set under consideratio
is: E5$(t,V(t))% t , and the fractal analysis we applied is
numerically well-behaved version of Eq.~9!: the
‘‘ e-variation method.’’ We briefly describe the method
Appendix B; for a full description see Ref.@18#. We applied
this analysis in order to extract the self-affinity expone
~which we refer to simply as the ‘‘fractal dimension’’ an
denote byg) of our V(t) curves.

III. RESULTS

In this section we will present the findings from our n
merical simulations. A discussion will be postponed to S
IV. We will start by presenting a sample of ‘‘raw’’ simula
tion results, then move on to a detailed presentation of e
of the three proteins, compare them to each other, perfor
t.
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n
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a

comparison with several test cases, estimate the effec
time scales of different processes, and finally study the r
of anharmonicity vs quasiharmonicity. All our MD simula
tions started out from the folded state~as determined by x
ray!, which we subsequently minimized using the Pow
algorithm @5#. The protein was then heated from 1 K in in-
crements of 1 K at every time step, with a random initia
velocity distribution, until the desired final temperature w
reached. Fractal analysis was performed on data from
constant temperature period only. Dynamics on all three p
teins was run for 25 psec, with a time step of 0.5 fsec~with
a few exceptions, to be detailed below!. Fractal analysis was
performed on the full 25-psec trajectories and on the first
psec of each such trajectory. This process was repeated
wide selection of temperatures in the range 1–800 K, wit
focus on the room temperature regime.

A. ‘‘Raw’’ results

A graph of a typicalV(t) curve is displayed in Fig. 1, for
BPTI at 310 K. We only present the time series after t
temperature is stabilized, i.e., the first 0.4 psec during wh
annealing from 1 K occurs are omitted. The noisy data a
strikingly similar to ‘‘fractional Brownian motion’’@13#, and
clearly suggest the use of fractal-type analysis. This is d
in Fig. 2, where the correspondinge-variation analysis is
shown. A straight line can be fitted with confidence to t
e-variation data over some 1.5 orders of magnitude~de-
cades!. The linear regression coefficient in this case isR 2

50.998, where 1 indicates a perfect straight line. The frac
dimension~slope in Fig. 2! is g51.76260.004, where the
uncertainty is due to the linear regression. All log-log plo
look strikingly similar to the one in Fig. 2, and have a simil
range of linearity. TheR 2 coefficient rarely went below
0.99. Figure 3 presents all 25 fractal dimensionsg obtained
from the runs for BPTI under the above-mentioned con
tions. The dashed line is the average fractal dimens
which in this case yieldsg51.7560.02. The uncertainty in

FIG. 1. Total potential energy as a function of time for a sing
run of BPTI at 310 K. Annealing from 1 K occurs during the first
0.4 psec, which are not shown. The highly irregular fluctuations
reminiscent of fractional Brownian noise.
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this number reflects both the individual linear regression
rors on each data point, as well the standard deviation a
the average. The procedure illustrated in Figs. 1–3 was
peated throughout this work. Thus everyg data point in the
figures to follow is the result of an average over 25 frac
dimensions obtained from independent runs differing only
the initial velocity distribution.

B. Myoglobin

Figure 4 shows the results of our simulations of myog
bin. Everyg point was obtained as discussed above, so
error bars are due to both the averaging over the 25
points and the linear regression error on each of these po
The dashed~solid! line connects theg values resulting from
the 25-psec~10-psec! runs. The inset shows the room tem
perature results. In the 10-psec case,g appears to have a

FIG. 2. e-variation @18# result for the curve shown in Fig. 1. A
straight line can be observed for about 1.5 decades. The bendi
high e values is due to finite size effects.

FIG. 3. All 25 fractal dimensions calculated for BPTI at 310
Individual error bars are due to linear regression. The dashed lin
the average fractal dimension.
r-
ut
e-

l
n

-
e
ta
ts.

shallow minimum around 10 K, which is, however, absent
the full 25-psec simulations. The error bars are in fact
large to discuss confidently a trend in the curves. Howeve
is clear thatthe fractal dimension increases with the simul
tion (or observation) timet: on averageg'1.67 for 10 psec,
and rises tog'1.72 for 25 psec. This behavior is seen in
our results ahead~see Figs. 5 and 6!. As is clear from the
inset, the fractal exponentg is essentially constant aroun
room temperature, apart from the rather sharp drop at 33

The robustness of the results was tested by running
simulations at 300 and 400 K with the heme group delet
The removal of the heme group makes myoglobin consid
ably less compact, causing it to unfold rather easily. He
we expected a significant change in the underlying dynam
However, Fig. 4 shows~squares and circles! that the influ-
ence of heme deletion is very minor, and results in a sm
increase ing.

C. BPTI

The results of our simulations of BPTI are shown in F
5. The overall behavior is very similar to that of myoglobi

at

is

FIG. 4. Fractal dimension as a function of temperature for m
globin. Lines connecting data points are guides to the eye only

FIG. 5. Fractal dimension as a function of temperature for BP
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The differences are~1! overall the fractal dimensions ar
higher; and~2! the minimum is more pronounced~beyond
statistical error!, also visible in the 25-psec data, and h
shifted to 50 K. The increase ing with increasing observa
tion time for the longer simulation is unmistakable for BP
as well.

We also performed a 10-psec simulation including a wa
solvation shell~diamond!. Clearly, this has no significan
effect on the results.

As a consistency test, we calculatedg for the complemen-
tary 10–25 psec of the simulation~triangle!. The result is ag
value in between the 10- and 25-psec values. Finally, the
observed for myoglobin can be seen here as well as in
25-psec simulation, atT5320 K.

D. PPT

Our PPT simulation results appear in Fig. 6. The gene
qualitative similarity to BPTI and myoglobin is noticeabl
namely, the increase in overall fractal dimension with sim
lation time, and the shallow minimum at around 50 K. Se
eral additional details are noteworthy:~1! We included a 50-
psec-long simulation at 1 K~same 0.5-fsec time step!, and
the increase ing persists~full circle!. ~2! We also performed
simulations in the ‘‘equilibration mode’’~see Sec. II A!.
These are indicated as squares, and can be seen most c
in the inset. The results are virtually identical to the us
‘‘no-equilibration mode,’’ demonstrating the agreement b
tween the canonical and microcanonical ensembles for la
(.100 atoms! systems. The only exception is the point
800 K, where the ‘‘no-equilibration’’ value ofg drops rather
sharply.~3! A water solvation shell~diamonds, also in the
equilibration mode! again does not produce statistically si
nificant results.

E. Comparison among myoglobin, BPTI, and PPT

Figures 7 and 8 compare the results for the three prot
in the 10- and 25-psec cases, respectively. These fig
merely recapitulate the results from Figs. 1–6, and show
new data. The main points to notice are the striking simil

FIG. 6. Fractal dimension as a function of temperature for P
r

ip
e

al

-
-

arly
l
-
ge
t

ns
es
o
-

ity between PPT and BPTI, compared to the overall low
fractal dimension values for myoglobin. This holds in bo
the 10- and 25-psec cases.

F. PPT under a variety of conditions

We performed further tests of the robustness of our res
by running 10-psec simulations of PPT at 300 K, under d
ferent conditions, as shown in Fig. 9. There are 11 d
points in this figure, and theg values are arranged in increa
ing order. Let us briefly describe the results, noting that c
7 is the ‘‘standard’’ one~i.e., the result shown in Fig. 6!.

The case ‘‘noa-helix’’ refers to a simulation in which the
entire PPTa helix was deleted. Under these conditions
significantly smallerg value is obtained. On the other han
data point 5 is the opposite case, where only thea helix
remains. The correspondingg is much closer to the referenc
value of data point 7. This showsthat thea helix is by and
large responsible for the observed fractal dimension.

Data point 2 corresponds to a freezing of all bond vib
tions. The remaining motions are therefore proper and

. FIG. 7. Comparison among myoglobin, BPTI, and PPT for 1
psec simulations.

FIG. 8. Comparison among myoglobin, BPTI, and PPT for 2
psec simulations.
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proper rotations and center of mass translations. Since
deviation from the referenceg value is small, it appears tha
the rotations are largely responsible for the observed frac
dimension.

Data point 3 is the result when a different integrator
used, which appears to have only a minor effect. This
was performed to check whether the results are a co
quence of numerical instabilities.

Data point 4 is another deletion experiment, this time
just the SER residue. This has a very small effect whi
curiously enough, is slightly larger than leaving only thea
helix, as indicated in case 5~although due to the large erro
bars in fact this effect cannot be taken too seriously!.

To calculate theg corresponding to data point 6, the te
minal hydrogens were treated as ‘‘extended’’: unlike in
other cases, the hydrogens were not treated as atoms
were ‘‘absorbed’’ into the carbons. This modifies the carb
mass and radius to appropriate effective values. The ef
however, is negligible.

Data points 8 and 10 relate to using the equilibrat
mode and adding a water solvation shell, respectively, wh
~as shown also in Fig. 6! do not have a significant effec
either.

Data point 9 reports the result from a single 250-ps
long trajectory: the trajectory was divided up into ten se
ments of 25 psec each, and theg ’s were averaged. Data poin
11 is due to a 100-psec-long trajectory which, however, e
ployed a time step of 5 fsec~ten times larger than the usu
time step!. In accordance with the observation of a frac
dimension which increases over time, the resulting aver
g ’s of data points 9 and 11, are larger than the refere
value.

G. PPT vs test systems: Polyalanine and NaCl

In order to estimate to what extent our results reflect pr
erties unique to realistic proteins, we present calculations
two test systems: poly~16!-alanine and a 40-atom cluster o
NaCl. Polyalanine folds into ana helix, so it has the crucia
part of the protein topology~recall points 1 and 5 in Fig. 9!,
but the underlying energy landscape is not expected to

FIG. 9. A comparison of results for PPT at 300 K and 10 ps
under a variety of conditions.
he

l
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or
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rugged. This is because all the residues are identical so t
is no frustration due to conflicting interactions between d
ferent segments of the polymer.~Nevertheless each residu
has internal conflicting interactions, giving rise to some ru
gedness!. The ground state of the nonpolymeric NaCl clus
is easily accessible@6#; i.e., starting from a disordered stat
it finds its crystalline ground state well before the end of o
10-psec simulation. Thus it has neither the protein topolo
nor its rugged energy landscape. The results of our sim
tions are shown in Fig. 10, which displays 10- and 25-p
runs of 16-alanine and NaCl at 250 K, as well as 10-p
runs at 300 K, and 10-psec runs for NaCl alone at 1 K. F
clarity of presentation the error bars have been remov
However, it should be remarked that when the error bars
taken into account the results for a given temperature o
lap. Indeed, it is striking thatthe results for polyalanine and
NaCl do not differ significantly from those for PPT. In fact
for 250 K, NaCl and PPT agree almost exactly, and
agreement for 10 psec at both 250 and 300 K is quite clo
Only at 1 K does there seem to be a significant differen
between NaCl and PPT. 16-alanine has lowerg values than
PPT, but not very much so. Barring accidental agreem
these results clearly indicate thatneither the protein topol-
ogy, nor the rugged energy landscape are essential in or
to obtain fractal V(t) curves, with fractal dimension close t
that of realistic proteins.

H. Role of observation time: Short simulations of PPT

In order to investigate systematically the role of the to
duration of the simulation and the correspondingly parti
pating physical processes, we ran simulations of 20 000 t
steps of PPT at 300 K, with progressively smaller time ste
This is different from the bulk of our simulations, where
constant time step of 0.5 fsec was employed, so care sh
be exercised in the comparison. The main point is that
employing a smaller time step, previously inaccessible f
motions are now observable. The results are shown in

, FIG. 10. A comparison between PPT, 16-alanine, and NaCl~40
atoms!. Error bars have been omitted for clarity and are replaced
small dots.
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11. It is remarkable that the fractal dimension obeys an
most perfect logarithmic law over three orders of mag
tudes,

g~t!51.6010.060 ln~t!, ~13!

for 0.1 psec<t<100 psec. The regression coefficient
R 250.999. Figure 11 thus demonstrates decisively thatg is
indeed strongly dependent on the total observation time@7#.

Below t5100 fsec~to the left of the arrows in Fig. 11!
the behavior ofg appears rather erratic, and we believe t
is due to numerical error. Indeed, the fastest motions in
protein are the OH or CH stretches, with a period of about
fsec. Thust510 fsec would most likely not probe even
single period, and can confidently be regarded as the lo
physical limit of our simulations. We turn next to an analys
and discussion of our results.

IV. DISCUSSION

The most striking observation presented in Sec. III is
rise of the fractal dimension with time. It suggests~at least!
two likely hypotheses for its explanation:As time evolves,
~1! there is increased access to local minima and ‘‘fine str
ture’’ of the potential energy landscape; and~2! low fre-
quency vibrations and energy transfer between modes
come increasingly activated.

The first of these attributes the growth ing over time to
the increased roughness of the sampled potential en
landscape. In other words, the protein ‘‘visits’’ more a
more local minima~or basins of attraction! as it samples its
conformational space. This process is consistent with an
crease in fractal dimension, since the fractal potential ene
landscape is not sampled all at once by the protein: ins
the inner details are only progressively revealed. Howe
as shown by Czerminski and Elber@4#, activated transitions
between similar conformational structures confined to
small set of minima~separated by barriers on the order
kBT) can occur atroom temperatureon a time scale of sev
eral picoseconds. A much larger time scale is required

FIG. 11. 20 000 time step simulations of PPT at 300 K w
varying total duration (x axis!. Results to the left of the arrows ar
in the unphysical range.
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such transitions at temperatures on the order of 1 K. T
insensitivity ofg to temperature therefore appears to rule o
the first hypothesis: at the low temperature end one wo
expect the protein to be confined to a single minimum with
the time scale of our simulations, and the fractal dimens
to be smaller as a consequence. Thus while increased ac
to local minima is consistent with the growth ofg with time,
it is inconsistent with the lack of temperature dependen
We conclude that the fractal dimension measured in
simulations is not a good probe of theglobal potential en-
ergy landscape topology.

This brings us to the second hypothesis which, as will
argued shortly, is consistent withboth the observed time and
temperature dependencies. According to this hypothesis
primary factor determining the fractal dimension of the p
tential energy curves is the self-generateddynamical noise,
namely the very broad frequency spectrum appearing in
dynamics. This spectrum and the resulting self-genera
noise is a consequence of theanharmonicityin the potential,
as is demonstrated convincingly in Fig. 12. Shown in t
figure, along with the full 10-psec simulation of PPT at 3
K, are the results of the same simulations with interact
terms VvdW,Velectrostatic, and Vtorsion deleted from the total
potential energy of Eq.~1!. Even with these terms absent
the potential energy we expect the system to exhibit qu
harmonic behavior only at sufficiently low temperature
This is because anharmonicities are implicitly present in
potentials given in Eqs.~4! and~5!. This becomes clear if the
angle and stretch potentials are expressed in Cartesian c
dinates. Thus at high enough temperatures the effect of
implicit anharmonicities should be evident. The results
Fig. 12 show these effects rather dramatically: there i
strong increase ofg as the temperature is increased. Th
shows that anharmonicity~even when included in describin
internal degrees of freedom of the proteins! is of paramount
importance in determiningg at high temperatures. It is inter
esting to note that the values ofg at low temperatures are
greater than that for the Rouse model, which has an exp
quadratic Hamiltonian~in Cartesian coordinates! at all tem-
peratures. This strongly implies that the value ofg51.5 may
indeed be a lower bound for the systems considered here

FIG. 12. 10-psec simulation results of PPT with the full pote
tial ~solid line!, and just the quasiharmonic part~dashed line!.
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high temperatures we find that the values ofg for PPT con-
taining only Eqs.~4! and~5! are, within error bars, nearly th
same as that obtained with the full potential. This also in
cates that nonlinearities are the main origin of the appa
universal description of fractality of potential energy su
faces in many-body systems.

The mechanism we propose is thus as follows:V(t) is a
sum over many anharmonic terms, the number of which
proportional to the number of atoms in the protein. The
anharmonic terms createovertones, which effectively fill the
frequency spectrum and create a quasicontinuum. Now
the one hand, as time evolves~at constant temperature! both
very low and very high~previously inactive! frequency com-
ponents become activated: the low frequencies are o
sampled on long times, whereas the high frequencies co
spond to highly energetic modes which must await ene
transfer before equilibration sets in. On the other hand
temperature increases~at constantt) intermode coupling
causing energy transfer from rigid modes to soft modes
facilitated, and more frequency components are activa
Thus in both cases one expects an increase in dynam
noise, with a corresponding increase in the fractal dimens
of the signal. This accounts for the behavior seen in F
4–6. Unfortunately we have not been able to study whet
the fractal dimension converges on a limiting value upon
equilibration~at least as a function of temperature this do
not seem to be the case—see Figs. 7 and 8!, since this re-
quires prohibitively long simulations@7#.

The behavior of the quasiharmonic case observed in
12 might seem curious in light of these arguments: after
in the purely harmonic case there is no intermode coupl
nor any dynamical noise. However, we recall that due to
use of non-Cartesian coordinates@see Eqs.~4!, ~5!, and~7!#,
a certainresidual degree of anharmonicityremains with re-
spect to the Cartesian components. At very low temperat
vibrations and rotations occur very close to their equilibriu
values, and the anharmonic effects are barely noticea
Only as the temperature rises do these vibrations and r
tions start to deviate significantly from their equilibrium va
ues and gain anharmonicity. This explains the rise ofg in the
quasiharmonic case. In contrast, the other terms@Eqs. ~2!,
~3!, and~6!# make anharmonic contributions at all tempe
tures, which accounts for the relative constancy ofg in this
case.

The different behavior of PPT and BPTI vs myoglob
can be attributed to thesizeof these proteins. Myoglobin ha
156 residues, whereas PPT and BPTI only have 41 and
residues, respectively. Therefore, at any given temperatu
takes longer to activate the overtones that give rise to
self-generated noise in myoglobin than in either PPT
BPTI, which explains the lower fractal dimension of my
globin in Figs. 7 and 8. The proximity in size between P
and BPTI, on the other hand, is the reason for their qua
tatively similar behavior. A related argument makes cle
why deletion of the heavy heme group from myoglob
yields a higherg ~Fig. 4!: without heme the energy redistr
bution among the modes occurs faster.

Also the curious similarity between NaCl and PPT can
attributed to anharmonic effects: NaCl, with its purely Co
lombic interactions, is of course strongly anharmonic, ev
more so than PPT. On the other hand, polyalanine is m
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harmonic, so as expected it has lowerg values.
It is thus seen that the ‘‘anharmonicity’’ hypothesis

capable of accounting for all of the salient features presen
our results for the fractal dimension of theV(t) curves. The
role of multiple minima and ruggedness of the energy la
scape seems to be more restricted: it is apparently not
global topology which is measured byg. Nevertheless, it
should be noted thatdifferentmultiple minima will generally
lead to a denser filling of the frequency spectrum or to
appearance of bands, which may overlap and thus ind
additional intermode coupling.

An important remaining issue concerns thevalue of g
observed in our simulations: definitely greater than 1.5~ex-
cept perhaps for thet5100 fsec simulation, Fig. 11!. A pri-
ori, it is not clear what the lower limit ofg for polymerlike
systems subject to the usual dynamics~like Newtonian or
Langevin! should be. A plausible lower limit of 1.5 is de
rived in the Appendixes for the Rouse model. The Rou
model considers a purely harmonic set of beads under
influence of a Gaussian random force. In our simulations~in
the ‘‘no-equilibration’’ microcanonical mode! there is no
randomness except for numerical truncation errors and ‘‘r
domness’’ due to chaos caused by the anharmonic te
However, we findg'1.5 as the result of our quasiharmon
simulations at very low temperature~Fig. 12!. As argued
above, this actually corresponds to the low-anharmonic
limit, so is in agreement with the result for the Rouse mod
provided the truncation errors and/or the chaotic ‘‘rando
ness’’ can be modeled as a Gaussian random force actin
the protein~this is a speculation!. Increasing the degree o
anharmonicity can only increase the fractal dimension of
signal, by the mechanisms discussed before. These a
ments then show that the Rouse model result could t
serve as alower boundto theg values found in our simula-
tions.

V. SUMMARY AND CONCLUSIONS

In this work we have studied the fractal properties of t
total potential energyV as a function of timet for several
realistic proteins. We performed simulations at a wide ran
of temperatures and a number of time scales. Our main c
clusion is that the fractal behavior seems to be caused by
self-generated dynamical noise due to intermode coup
and equilibration promoted by anharmonic effects. There
universal aspects to this behavior, as exemplified by
similarity between totally different systems such as PPT a
NaCl. Thus it cannot serve to characterize individual prote
and their energy landscape, but is rather a property comm
to all sufficiently large and anharmonic systems. We belie
however, that probing the fractal aspects of protein poten
energy landscapes is a useful approach to the characte
tion of the ruggedness of these landscapes. To achieve th
would be very interesting to examineV as a function of
appropriatespatial coordinates, rather thant. The question
remains of whether there are other ways leading to us
geometrical characterizations of the energy landscape,
identification of multiple minima and maxima by real an
imaginary frequencies@3#.

Note added: While this paper was in the final stages
preparation we became aware of an article by Garcı´a et al.
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@19#. The authors concluded that the time dependence of
mean-square displacement of crambin around the cry
structure is described by an effective fractal exponeng
'1.60 ~for t long!. This result was interpreted as indicativ
of multi-basin dynamics which would be typical in a rugg
energy landscape@3#.
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APPENDIX A: AN ANALYTICALLY SOLVABLE
EXAMPLE: THE ROUSE MODEL

It is useful to have a simple reference model in the ba
ground to compare the numerical results of Sec. III with.
this end, we consider the Rouse model~RM!, which is stan-
dard in polymer theory. It describes a polymer as a set oN
beads located at (R1 ,R2 , . . . ,RN) connected along a chain
where each bead~n! undergoes Brownian motion under th
influence of random forcefn(t). It should be remarked tha
this is essentially different from our simulations, in which n
randomness~except for numerical truncation errors and ch
otic ‘‘randomness’’ due to anharmonicity! is present. Never-
theless, it useful to study the RM in order to see analytica
how a fractalV(t) can come about.

The excluded volume and hydrodynamic interactions
disregarded in the RM. The dynamics is generally descri
by the Langevin equation@20#

]

]t
Rn~ t !5(

m
Hnm•S fm~ t !2

]U

]Rm
D1

1

2
kBT(

m

]

]Rm
•Hnm .

~A1!

In the RM the mobility tensor is assumed to be isotropic

Hnm5
I

z
dnm , ~A2!

and the interaction potential is taken to be harmonic,

U5
k

2(
n52

N

~Rn2Rn21!2, ~A3!

so that Eq.~A1! reduces to

z
dRn

dt
52k~2Rn2Rn112Rn21!1fn

~n52,3, . . . ,N21!, ~A4!
he
tal

.

t

-

-

y

e
d

z
dR1

dt
52k~R12R2!1f1 , ~A5!

z
dRN

dt
52k~RN2RN21!1fN . ~A6!

The force and the potential define a time scale through

t[
z

k
. ~A7!

It is convenient to consider the last set of equations in
limit where n is taken as a continuous variable:

z
]Rn

]t
5k

]2Rn

]n2 1fN ,

~A8!
]Rn50

]n
5

]Rn5N

]n
50.

The random forces are assumed to be Gaussian,
d-function uncorrelated:

^fn~ t !&50, ~A9!

^fn~ t !fm~ t8!&52zkBTd~n2m!d~ t2t8!.

In the continuum limit the potential energy becomes

U5
k

2E0

N

dnS ]Rn

]n D 2

. ~A10!

The last three sets of equations define the continuum RM

1. Normal coordinates

We are interested in calculating the fractal scaling of
potential energyU(t) defined in Eq.~A10!. For this purpose
it is convenient to transform to normal coordinates. It can
shown that in terms of the coordinates

Xp[
1

NE0

N

dn cos~ppn/N!Rn~ t !, p50,1,2, . . . ,

~A11!

the Langevin equation~A8! becomes

zp

dXp

dt
52kpXp1fp , ~A12!

where

z05Nz, ~A13!

zp52Nz for p51,2, . . . , ~A14!

kp5
2p2kp2

N
for p50,1,2, . . . , ~A15!
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and the forces satisfy

^fp~ t !&50, ~A16!

^fp~ t !fq~ t8!&52zpkBTdpqd~ t2t8!. ~A17!

In this representation the random forces as well as the
tions of theXp’s are independent, so that the motion of t
polymer is decomposed into independent modes. Indeed,
easily verified that the formal solution to Eq.~A12! is

Xp~ t !5
1

zp
E

2`

t

dt8 e2~ t2t8!/tpfp~ t8!, ~A18!

where

tp[
t1

p2 , t1[
z1

k1
5

N2

p2 t. ~A19!

Finally, the inverse transform of Eq.~A11! is

Rn5X012(
p51

`

Xp cos~ppn/N!. ~A20!
o-

is

2. Scaling of the potential energy

We will now present a calculation of the fractal scaling
the potential energy in the RM, as defined in Eq.~11! @21#:

CU~ t !5^@U~ t !2U~0!#2&. ~A21!

Inserting the expression forRn into Eq. ~A10! and expand-
ing, yields

U52kS p

ND 2

(
p,q51

N

p qXp~ t !•Xq~ t !

3E
0

N

dn sin~ppn/N!sin~qpn/N!. ~A22!

The integral evaluates to (N/2)dpq , so that

U5k
p2

N (
p51

N

p2Xp
2~ t !. ~A23!

Thus the fluctuation can be written as:
CU~ t !5S kp2

N D 2K F (
p51

N

p2@Xp
2~ t !2Xp

2~0!#G2L
5S kp2

N D 2

(
p,q51

N

p2 q2@^Xp
2~ t !Xq

2~ t !&22^Xp
2~ t !Xq

2~0!&1^Xp
2~0!Xq

2~0!&#. ~A24!

Inserting the formal solution for the normal coordinates@Eq. ~A18!#, the averages can be calculated from

^Xp
2~ t !Xq

2~ t8!&5
1

zp
2zq

2E
2`

t

dt1E
2`

t

dt2E
2`

t8
dt3E

2`

t8
dt4e2~2t2t12t2!/tpe2~2t82t32t4!/tq^fp~ t1!•fp~ t2! fq~ t3!•fq~ t4!&.

~A25!

To proceed, the averages over the forces must be evaluated. This can be done with the help of Wick’s theorem@20#

^xn1
xn2

•••xn2p
&5 (

all pairings
^xm1

xm2
&•••^xm2p21

xm2p
&, ~A26!

where thexn’s are Gaussian random variables. Employing the orthogonality relations from Eq.~A17! thus yields

^fp~ t1!•fp~ t2!fq~ t3!•fq~ t4!&5~2kBT!2@zpzqd~ t12t2!d~ t32t4!1zp
2dpq

2 d~ t12t3!d~ t22t4!1zp
2dpq

2 d~ t12t4!d~ t22t3!#.
~A27!

In addition, we need the rule

E
2`

t

dt2 f ~ t2t2!d~ t22t1!5 f ~ t2t1!Q~ t2t1!, ~A28!

whereQ(x) is the Heaviside step function. Combining these results, thed functions simplify the expression in Eq.~A25! as
follows:
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^Xp
2~ t !Xq

2~ t8!&5~2kBT!2F 1

zpzq
E

2`

t

dt1 e2~ t2t1!~1/tp11/t1!E
2`

t8
dt3 e2~ t82t3!~1/tp11/t1!12

dpq

zp
2 S E

2`

min~ t,t8!
dt1 e2~ t1t822t1!/tpD 2G

5~2kBT!2F S tptq

tp1tq
D 2 1

zpzq
12dpq

tp
2

zp
2 e2[2 min~ t,t8!2t2t8]/ tpG . ~A29!

Inserting this into Eq.~A25! yields

CU~ t !5S kp2

N D 2

~2kBT!2 (
p,q51

N

p2 q2F S tptq

tp1tq
D 2 1

zpzq
14

tp
2

zp
2 ~12e2t/tp!dpqG . ~A30!

Using the definitions of the various parameters appearing here, the final result becomes

CU~ t !5~kBT!2F (
p,q51

N
1

p21q2 14(
p51

N

~12e22p2~ t/t!~p2/N2!!G . ~A31!

The time dependence ofCU(t) for large but finiteN arises from the term(p51
N exp(22p2tp2/tN2). To derive an expression fo

g, it is useful to approximate the above sums by integrals. Definingx5p/N, y5q/N, we have

CU~ t !'~kBT!2F4N1
1

N2E
1/N

1

dx E
1/N

1

dy
1

x21y2 24E
1/N

1

dx e22p2~ t/t!x2G . ~A32!
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this
The first integral is easily evaluated after a transformation
polar coordinates, and the second corresponds to the
function ~in the second integral the error in taking 1/N50 is
negligible!

CU~ t !'~kBT!2F4N12p
ln N

N2 22Ap
erfAu

Au
G , u[2p2t/t.

~A33!

In accordance with the preceding comments, we next t
the t!t limit. Then, using erf(x)'(2/Ap)@x2x3/(331!)
1x5/(532!)2•••# to the first nontrivial~third! order, we
can write

CU~ t!t!'~kBT!2F4N12p
ln N

N2 24S 12
1

3
u D G

;~kBT!2
8p2

3

t

t
;t2~22g!, ~A34!

where in the last line the time-independent terms were
nored, and ultimatelyg5 3

2 . Thus the Rouse model has
potential energy fluctuations which have a fractal dimens
of 3

2 , just like a classical, fully correlated random walk.

APPENDIX B: e-VARIATION METHOD

Dubuc et al. @18# introduced a method particularly we
suited for the evaluation of the self-affinity exponent. Th
demonstrated that their method has the most stablelocal ex-
ponent in comparison to a variety of other methods, such
box counting, Minkowski-Bouligand, and power spectru
All methods are equivalent in the continuous domain,
significant differences arise when they are applied to d
o
ror

e

-

n

as
.
t
i-

tized data. Systematic errors which plague other methods
eliminated in thee-variation method.

If the graph of a functionf (x) is fractal, there exists s
least one part of the domain@0,1# of f on whichf is nowhere,
or almost nowhere differentiable. Ifp(x,x8) is the slope of
the line connecting„x, f (x)… and „x8, f (x8)…, fractality is re-
lated to the following property: supp(x,x8)→x8→x`. It is
the rate of growthof this convergence~asx8 tends tox) that
determines the fractal dimension. In order to measure
behavior, Dubucet al. introduced the ‘‘e variation’’ of f :

V~e, f !5E
0

1

v~x,e!dx, ~B1!

where the ‘‘e oscillation’’ v(x,e) is

v~x,e!5supx8PRe~x! f ~x8!2 infx8PRe~x! f ~x8!, ~B2!

and whereRe(x)5$sP@0,1#:ux2su,e%.
Since f is continuous,V(e, f )→e→00. It is the rate of

growth of V(e, f ) that yields the fractal dimension, or~more
precisely! the self-affinity exponentg. The corresponding
log-log plot for the calculation of g is
@ log(1/e), log„V(e, f )/e2

…#, with the exponent given by the
2-slope.

Following is aMATHEMATICA program which implements
an algorithm to calculate thee variation. The algorithm
closely follows the implementation suggested in Ref.@18#.
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